290 research outputs found

    Density Waves Inside Inner Lindblad Resonance: Nuclear Spirals in Disk Galaxies

    Get PDF
    We analyze formation of grand-design two-arm spiral structure in the nuclear regions of disk galaxies. Such morphology has been recently detected in a number of objects using high-resolution near-infrared observations. Motivated by the observed (1) continuity between the nuclear and kpc-scale spiral structures, and by (2) low arm-interarm contrast, we apply the density wave theory to explain the basic properties of the spiral nuclear morphology. In particular, we address the mechanism for the formation, maintenance and the detailed shape of nuclear spirals. We find, that the latter depends mostly on the shape of the underlying gravitational potential and the sound speed in the gas. Detection of nuclear spiral arms provides diagnostics of mass distribution within the central kpc of disk galaxies. Our results are supported by 2D numerical simulations of gas response to the background gravitational potential of a barred stellar disk. We investigate the parameter space allowed for the formation of nuclear spirals using a new method for constructing a gravitational potential in a barred galaxy, where positions of resonances are prescribed.Comment: 18 pages, 9 figures, higher resolution available at http://www.pa.uky.edu/~ppe/papers/nucsp.ps.g

    Microlensing Optical Depth of the COBE Bulge

    Get PDF
    We examine the left-right asymmetry in the cleaned COBE/DIRBE near-infrared data of the inner Galaxy and show (i) that the Galactic bar is probably not seen very nearly end-on, and (ii) that even if it is, it is not highly elongated. The assumption of constant mass-to-light ratio is used to derive simulated terminal-velocity plots for the ISM from our model luminosity distributions. By comparing these plots with observed terminal velocities we determine the mass-to-light ratio of the near-IR bulge and disk. Assuming that all this mass contributes to gravitational microlensing we compute optical depths τ\tau for microlensing in Galactic-centre fields. For three models with bar major axis between 10deg⁡−25deg⁥10\deg-25\deg from the Sun-Galactic Center line, the resulting optical depths in Baade's window lie in the range 0.83\times10^{-6} \lta \tau \lta 0.89\times10^{-6} for main-sequence stars and 1.2\times10^{-6} \lta \tau \lta 1.3\times10^{-6} for red-clump giants. We discuss a number of uncertainties including possible variations of the near-infrared mass-to-light ratio. We conclude that, although the values predicted from analyzing the COBE and gas velocity data are inconsistent at the 2−2.5σ2-2.5\sigma level with recent observational determinations of τ\tau, we believe they should be taken seriously.Comment: 9 pages, TeX. 7 figures (gif). Submitted to MNRAS. Also available with full resolution figures as ps-file at http://www.astro.unibas.ch/dynamics/papers.htm

    Nuclear Bar, Star Formation and Gas Fueling in the Active Galaxy NGC 4303

    Full text link
    A combination of Hubble Space Telescope (HST) WFPC2 and NICMOS images are used to investigate the gas/dust and stellar structure inside the central 300 pc of the nearby active galaxy NGC 4303. The NICMOS H-band (F160W) image reveals a bright core and a nuclear elongated bar-like structure of 250 pc in diameter. The bar is centered on the bright core, and its major axis is oriented in proyection along the spin axis of the nuclear gaseous rotating disk recently detected (Colina & Arribas 1999). The V-H (F606W - F160W) image reveals a complex gas/dust distribution with a two-arm spiral structure of about 225 pc in radius. The southwestern arm is traced by young star-forming knots while the northeastern arm is detected by the presence of dust lanes. These spirals do not have a smooth structure but rather they are made of smaller flocculent spirals or filament-like structures. The magnitudes and colors of the star-forming knots are typical of clusters of young stars with masses of 0.5 to 1 x 105Msolar,andagesof5to25millionyears.Theoverallstructureofthenuclearspiralsaswellasthesize,numberandmassesofthestar−formingknotsareexplainedinthecontextofamassivegaseousnucleardisksubjecttoself−gravitationalinstabilitiesandtothegravitationalfieldcreatedbythenuclearbar.Accordingtothemodel,thegaseousdiskhasamassofabout5x107Msolarinsidearadiusof400pc,thebarhasaradiusof150pcandapatternspeedofabout0.5Myr−1,andtheaveragemassaccretionrateintothecore(R<8pc)isabout0.01Msolar10^5 M_{solar}, and ages of 5 to 25 million years. The overall structure of the nuclear spirals as well as the size, number and masses of the star-forming knots are explained in the context of a massive gaseous nuclear disk subject to self-gravitational instabilities and to the gravitational field created by the nuclear bar. According to the model, the gaseous disk has a mass of about 5 x 10^7 M_{solar} inside a radius of 400 pc, the bar has a radius of 150 pc and a pattern speed of about 0.5 Myr^{-1}, and the average mass accretion rate into the core (R < 8 pc) is about 0.01 M_{solar} yr^{-1} for about 80 Myr.Comment: ApJ, in press (February 1, 2000

    Comparison of bar strengths in active and non-active galaxies

    Full text link
    Bar strengths are compared between active and non-active galaxies for a sample of 43 barred galaxies. The relative bar torques are determined using a new technique (Buta and Block 2001), where maximum tangential forces are calculated in the bar region, normalized to the axisymmetric radial force field. We use JHK images of the 2 Micron All Sky Survey. We show a first clear empirical indication that the ellipticies of bars are correlated with the non-axisymmetric forces in the bar regions. We found that nuclear activity appears preferentially in those early type galaxies in which the maximum bar torques are weak and appear at quite large distances from the galactic center. Most suprisingly the galaxies with the strongest bars are non-active. Our results imply that the bulges may be important for the onset of nuclear activity, but that the correlation between the nuclear activity and the early type galaxies is not straightforward.Comment: MNRAS macro in tex format, 9 pages, 10 figure

    Feeding AGN: new results from the NUGA survey

    Full text link
    The NUGA project is a high-resolution (0.5''-1'') CO survey of low luminosity AGN including the full sequence of activity types (Seyferts, LINERs and transition objects). NUGA aims to systematically study the different mechanisms for gas fueling of AGNs in the Local Universe. In this paper we discuss the latest results of this recently completed survey, which now includes newly acquired subarcsec resolution observations for all targets of the sample. The large variety of circumnuclear disk morphologies found in NUGA galaxies (m=1, m=2 and stochastic instabilities) is a challenging result that urges the refinement of current dynamical models. In this paper we report on new results obtained in 4 study cases for NUGA: NGC4826, NGC7217, NGC4579 and NGC6951Comment: 4 pages, 2 figures. Contributed talk to appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds. Th. Storchi Bergmann, L.C. Ho, H.R. Schmit

    NUGA: the IRAM survey of AGN spiral hosts

    Get PDF
    The NUclei of GAlaxies (NUGA) project is a combined effort to carry out a high-resolution (<1'') interferometer CO survey of a sample of 12 nearby AGN spiral hosts, using the IRAM array. We map the distribution and dynamics of molecular gas in the inner 1 kpc of the nuclei with resolutions of 10-50 pc, and study the mechanisms for gas fueling of the different low-luminosity AGN. First results show evidence for the occurrence of strong m=1 gas instabilities in Seyferts. NUGA maps allow us to address the origin/nature of m=1 modes and their link with m=2 modes and acoustic instabilities, present in other targets.Comment: 1 gzipped tar file containing 1 Latex file + 3 eps figures. Proceedings of ''Active Galactic Nuclei: from Central Engine to Host Galaxy'', meeting held in Meudon, France, July 23-27, 2002, Eds.: S. Collin, F. Combes and I. Shlosman. To be published in ASP Conference Serie

    Towards the Secondary Bar: Gas Morphology and Dynamics in NGC 4303

    Get PDF
    The bulk of the molecular line emission in the double barred galaxy NGC4303 as observed in its CO(1-0) line with the OVRO mm-interferometer comes from two straight gas lanes which run north-south along the leading sides of the large-scale primary bar. Inside a radius of ~ 400 pc the molecular gas forms a spiral pattern which, for the northern arm, can be traced to the nucleus. Comparison of the OVRO and archival HST data with dynamical models of gas flow in the inner kiloparsec of single- and double-barred galaxies shows that the observed global properties of the molecular gas are in agreement with models for the gas flow in a strong, large-scale bar, and the two-arm spiral structure seen in CO in the inner kiloparsec can already be explained by a density wave initiated by the potential of that bar. Only a weak correlation between the molecular gas distribution and the extinction seen in the HST V-H map is found in the inner 400 pc of NGC4303: The innermost part of one arm of the nuclear CO spiral correlates with a weak dust filament in the color map, while the overall dust distribution follows a ring or single-arm spiral pattern well correlated with the UV continuum. This complicated nuclear geometry of the stellar and gaseous components allows for two scenarios: (A) A self-gravitating m=1 mode is present forming the spiral structure seen in the UV continuum. In this case the gas kinematics would be unaffected by the small (~ 4'') inner bar. (B) The UV continuum traces a complete ring which is heavily extincted north of the nucleus. Such a ring forms in hydrodynamic models of double bars, but the models cannot account for the UV emission observed on the leading side of the inner bar. (abridged)Comment: 47 pages, 14 figures, accepted for publication in Ap
    • 

    corecore